
Stephen Checkoway

Programming Abstractions
Lecture 28: Implementation details and macros

Dynamic binding

Lexical vs. dynamic binding

(let ([y 3])  
 (let ([f (lambda (x) (+ x y))]  
 [y 18])  
 (f 2)))

Lexical binding: 5

Dynamic binding: 20

Evaluating a lambda gives a closure. A closure in a language with dynamic

binding needs to contain which information?

A. The list of parameters

B. The list of parameters and the parsed body

C. The list of parameters, the parsed body, and the environment in which

the lambda was evaluated

D. The list of parameters, the parsed body, and the environment in which

the closure is to be evaluated

4

Dynamic binding in MiniScheme

We need only make minimal changes to interp.rkt

We don't need to store the environment in which we evaluate the lambda when

we construct a closure

When we apply a procedure to a list of arguments, we need to extend the

current environment

Changes to apply-proc

-(define (apply-proc proc args)

+(define (apply-proc proc args e)

 (cond [(prim-proc? proc)

 (apply-primitive-op (prim-proc-op proc) args)]

 [(closure? proc)

 (let ([params (closure-params proc)]

- [body (closure-body proc)]

- [c-env (closure-env proc)])

+ [body (closure-body proc)])

 (if (= (length params) (length args))

- (eval-exp body (env params (map box args) c-env))

+ (eval-exp body (env params (map box args) e))

 (error 'apply-proc "incorrect number of parameters")))]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

Changes to eval-exp

 [(app-exp? exp-tree)

 (apply-proc

 (eval-exp (app-exp-proc exp-tree) e)

- (map (λ (exp) (eval-exp exp e)) (app-exp-args exp-tree)))]

+ (map (λ (exp) (eval-exp exp e)) (app-exp-args exp-tree))

+ e)]

That's it!

MS> (let ([y 3])

 (let ([f (lambda (x) (+ x y))]

 [y 18])

 (f 2)))

20

Pass by reference

Pass by value vs. pass by reference

(let ([x 0]

 [f (lambda (y) (set! y 34))])

 (begin

 (f x)

 x))

Pass by value: 0

Pass by reference: 34

Pass by reference in MiniScheme

When evaluating arguments for a app-exp,

‣ if the argument is a var-exp, it should be looked up, but not evaluated

‣ if the argument isn't a var-exp, it should be evaluated and boxed

 [(app-exp? exp-tree)

- (apply-proc

- (eval-exp (app-exp-proc exp-tree) e)

- (map (λ (exp) (eval-exp exp e)) (app-exp-args exp-tree)))]

+ (let ([args (map (λ (exp)

+ (if (var-exp? exp)

+ (env-lookup e (var-exp-sym exp))

+ (box (eval-exp exp e))))

+ (app-exp-args exp-tree))])

+ (apply-proc

+ (eval-exp (app-exp-proc exp-tree) e)

+ args))]

Arguments that are variable expressions are looked up but not unboxed.

Other arguments are evaluated and then boxed.

Can we just evaluate the variable expression arguments and box the results

the same as we do with other arguments?

A. No. We need set! to be able to modify the original binding stored in the

box

B. Yes. All we need is for arguments to be boxed so it doesn't matter which

box the argument value is stored in; not unboxing is just more efficient

(i.e., it takes less work since the value is already boxed)

C. It depends on the value stored in the argument variable

12

Pass by reference in MiniScheme

All of the arguments passed to apply-proc are boxes, not values

‣ For primitive procedures, we need to unbox them

‣ For closures, we need to bind parameters to the existing boxes

 (define (apply-proc proc args)

 (cond [(prim-proc? proc)

- (apply-primitive-op (prim-proc-op proc) args)]

+ (apply-primitive-op (prim-proc-op proc) (map unbox args))]

 [(closure? proc)

 (let ([params (closure-params proc)]

 [body (closure-body proc)]

 [c-env (closure-env proc)])

 (if (= (length params) (length args))

- (eval-exp body (env params (map box args) c-env))

+ (eval-exp body (env params args c-env))

 (error 'apply-proc "incorrect number of parameters")))]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

That's it!

MS> (let ([x 0]

 [f (lambda (y) (set! y 34))])

 (begin

 (f x)

 x))

34

MS> (let ([x 0]

 [f (lambda (y) (set! y 34))])

 (begin

 (f (+ x 0))

 x))

0

Pass by name

Pass by value vs name
Pass by name

(let* ([v 0]

 [f (λ (x) ; Don't need begin in λ body

 (set! v (+ v 1))

 x)])

 (f (+ v 5)))

Pass by name

‣ The text of f's body becomes the two expressions (by replacing x with the

text of the argument)  

(set! v (+ v 1))  
(+ v 5)

‣ v is set to 1 and then 6 is returned

Pass by name in MiniScheme

This is more difficult

First, change calls to apply-proc

‣ Do not evaluate arguments

‣ Pass the argument expressions and the environment to apply-proc

 [(app-exp? exp-tree)

 (apply-proc

 (eval-exp (app-exp-proc exp-tree) e)

- (map (λ (exp) (eval-exp exp e)) (app-exp-args exp-tree)))]

+ (app-exp-args exp-tree)

+ e)]

Pass by name in MiniScheme

Second, change apply-proc

‣ Take the current environment as a parameter, only needed for prim-procs

‣ Evaluate arguments for a prim-proc

‣ Reconstruct a closure's body by substituting argument expressions for

parameters

Pass by name in MiniScheme

-(define (apply-proc proc args)

+(define (apply-proc proc args e)

 (cond [(prim-proc? proc)

- (apply-primitive-op (prim-proc-op proc) args)]

+ (apply-primitive-op (prim-proc-op proc)

+ (map (λ (exp) (eval-exp exp e)) args))]

 [(closure? proc)

 (let ([params (closure-params proc)]

 [body (closure-body proc)]

 [c-env (closure-env proc)])

 (if (= (length params) (length args))

- (eval-exp body (env params (map box args) c-env))

+ (eval-exp (substitute (map list params args) body)

+ (env params (map box args) c-env))

 (error 'apply-proc "incorrect number of parameters")))]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

Create an association list

Substitution is tricky

Given

(let ([v 0])

 (let ([f (lambda (x)

 (begin

 (set! v (+ v 1))

 x))])

 (f (+ v 5))))

the body of f needs to be reconstructed as

(begin

 (set! v (+ v 1))

 (+ v 5))

substitute

(define (substitute args exp)

 (cond [(lit-exp? exp) exp] ; lit-exp doesn't change

 [(var-exp? exp) ...]

 [(app-exp? exp) ...]

 [(ite-exp? exp) ...]

 [(let-exp? exp) ...]

 [(lam-exp? exp) ...]

 [(set-exp? exp) ...]

 [(seq-exp? exp) ...]

 [else (error ...)]))

Variable expressions

For a variable expression, look up the variable in the list of (param arg-exp)

and replace it with the corresponding arg-exp, if the variable is in the list

 [(var-exp? exp)

 (let ([arg (assoc (var-exp-sym exp) args eq?)])

 (if arg

 (second arg)

 exp))]

Application, if-then-else, sequence expressions

For an application, if-then-else, and sequence (begin) expressions, recursively

substitute in each of the sub-expressions

 [(app-exp? exp)

 (app-exp (substitute args (app-exp-proc exp))

 (map (λ (arg-exp) (substitute args arg-exp))

 (app-exp-args exp)))]

 [(ite-exp? exp)

 (ite-exp (substitute args (ite-exp-cond exp))

 (substitute args (ite-exp-then exp))

 (substitute args (ite-exp-else exp)))]

 [(seq-exp? exp)

 (seq-exp (map (λ (exp) (substitute args exp))

 (seq-exp-exps exp)))]

Lambda and let expressions

Tricky! Recursively substitute in let bindings

Recursively substitute in body, except for arguments that are shadowed by the let-

binding or lambda parameters

 [(let-exp? exp)

 (let* ([syms (let-exp-syms exp)]

 [vals (map (λ (v) (substitute args v)) (let-exp-exps exp))]

 [args (filter-not (λ (sym) (assoc sym args eq?)) syms)]

 [body (substitute args (let-exp-body exp))])

 (let-exp syms vals body))]

 [(lam-exp? exp)

 (let* ([params (lam-exp-params exp)]

 [args (filter-not (λ (sym) (assoc sym args eq?)) params)]

 [body (substitute args (lam-exp-body exp))])

 (lam-exp params body))]

Set expression

If x in (set! x exp) is a parameter to be replaced with an argument expression

then

‣ if the argument is a variable, replace x with the symbol for the variable

‣ if the argument is not a variable, it's an error

Recursively substitute in the expression

 [(set-exp? exp)

 (let* ([old-sym (set-exp-sym exp)]

 [new-sym (assoc old-sym args)]

 [new-exp (substitute args (set-exp-exp exp))])

 (cond [(not new-sym) (set-exp old-sym new-exp)]

 [(var-exp? (second new-sym))

 (set-exp (var-exp-sym (second new-sym)) new-exp)]

 [else (error …)]))]

Painful, but that's it

MS> (let ([v 0])

 (let ([f (lambda (x)

 (begin

 (set! v (+ v 1))

 x))])

 (f (+ v 5))))

6

define-syntax: hygienic macros

Macros in C: text replacement

#include <stdio.h>

#define multiply(x, y) x * y

int main() {

 int z = multiply(2, 3);

 printf("%d\n", z);

 return 0;

}

Preprocessor performs a textual replacement 

 int z = 2 * 3;  

Prints out 6

multiply(1+2, 3) will expand to 1+2 * 3 which is 7 rather than 9!

Similar, but better, rewriting in Scheme

(define-syntax keyword

 (syntax-rules ()

 [pattern1 transformation1]

 [pattern2 transformation2]

 ...

 [patternn transformationn]))

Patterns can specify variables that can be used in the corresponding

transformation

What does this code print out?

(define (zero! var)

 (set! var 0))

(let ([x 10])

 (displayln x) ; prints out the value of x

 (zero! x)

 (displayln x)) ; prints out the value of x

A. 0  

0

B. 10 

0

C. 10 

10

D. This is an error

30

Our zero! didn't work correctly

What we'd like to do is transform (zero! var) into (set! var 0)

(define-syntax zero!

 (syntax-rules ()

 [(_ var) (set! var 0)]))

The pattern (_ var) means that this rule will match things like (zero! x)

‣ The leading _ means it matches the keyword

The transformation (set! var 0) means that  

(zero! y) will be replaced with (set! y 0)

‣ Variables in the pattern match parts of the input  

which can be used in the transformed output

(define-syntax zero!

 (syntax-rules ()

 [(_ var) (set! var 0)]))

(let ([x 10])

 (displayln x) ; Prints out 10

 (zero! x)

 (displayln x)) ; Prints out 0

Let's extend zero! to zero out multiple vars

We can use ... in a pattern to mean "match zero or more of the previous thing"

and we can pair that with ... in the transformation to mean repeat the previous

thing once per input item

(define-syntax zero!

 (syntax-rules ()

 [(_ var ...)

 (begin

 (set! var 0) ...)]))

Now (zero! foo bar baz) expands to 

(begin  
 (set! foo 0)  
 (set! bar 0)

 (set! baz 0))

What does this code print out?

(define-syntax foo!

 (syntax-rules ()

 [(_ var ...)

 (begin

 (set! var (add1 var)) ...)]))

(let ([x 10]

 [y 20])

 (displayln (format "x=~s y=~s" x y))

 (foo! x y)

 (displayln (format "x=~s y=~s" x y)))

A. x=11 y=21  
x=11 y=21

B. x=10 y=20  
x=11 y=20

C. x=10 y=20  
x=10 y=21

D. x=10 y=20  
x=11 y=21

34

